625+4225=x^2

Simple and best practice solution for 625+4225=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 625+4225=x^2 equation:



625+4225=x^2
We move all terms to the left:
625+4225-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+4850=0
a = -1; b = 0; c = +4850;
Δ = b2-4ac
Δ = 02-4·(-1)·4850
Δ = 19400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19400}=\sqrt{100*194}=\sqrt{100}*\sqrt{194}=10\sqrt{194}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{194}}{2*-1}=\frac{0-10\sqrt{194}}{-2} =-\frac{10\sqrt{194}}{-2} =-\frac{5\sqrt{194}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{194}}{2*-1}=\frac{0+10\sqrt{194}}{-2} =\frac{10\sqrt{194}}{-2} =\frac{5\sqrt{194}}{-1} $

See similar equations:

| 11z−9z=16 | | 3b-25=13b-5 | | 10x-4x=52 | | 3/4n+2=1/8n+1/2 | | 6(2x—11)+15=21 | | 4=0.0127x | | 2.5=(x+4)*0.25 | | 11a-3=7a+25 | | x8=7/11 | | n−1-2n=14 | | 7n−1−2n=14 | | x– 3 = 67 | | 7j+8=36 | | (4+0.75y)-3y=16 | | 4x-3+5=-6 | | 3x-8x+24=29 | | 250=(x+500)*0.25 | | y3+5=26 | | (3x+1)(3x+1-3)=28 | | 12+6x=4-2x | | 4/7-3/5=x | | 11.2x+302.4=28x | | -2x+5x–8=0 | | –2x–7=–3 | | –2x–7=–3. | | z+183=181 | | 66y^2+342y-560=0 | | -4f-8=-3f-9 | | X2+x-10=0 | | 2(3)+-2(4x)+7=0 | | (2+x)3=0 | | (2x)+3=0 |

Equations solver categories